
https://t.me/UpRNDex - группа для вопросов

Обучающий курс
Мобильная разработка
на React Native

(первый уровень)

Вступление 1

Примечание 5

Установка инструментария 6
Зависимости 6

Android 6
iOS 8

IDE 9

JavaScript 10
Типы данных, переменные, основные операторы 10
Массивы, методы map, filter деструктуризация массивов 11
Объекты, деструктуризация объектов, классы 12
Функции, контекст выполнения 13

Создание проекта 14

Описание проекта 16

Package.json, зависимости, скрипты 18
Содержимое 18
Зависимости 19

Компоненты 21

JSX + FlexBox 23

Redux 24
Структура модуля 24
Описание состояния приложения 24
Описание состояния модуля 25
Actions и Reducer модуля 25
Корневой reducer 27
Отображение данных состояния приложения 28
Работа с бизнес-логикой (API) 29

Навигация 31

Работа с запросами 34

Настройки и среда разработки (dev, test, stage, prod) 37

Отладка 39

Производительность 40

Правила написания кода 41

Обновление React Native 42

Тестовое задание 43

Полезные ссылки 44

Вступление
Данный курс поможет вам написать кроссплатформенное приложение
используя ​React Native​.
React Native это фреймворк разработанный корпорацией Facebook с целью
упрощения написания мобильных приложений с использованием ранее
созданного фреймворка ​React​. На сегодняшний день это один из самых
популярных репозиториев ​GitHub​.

При написании кода используется JavaScript или TypeScript (будет рассмотрен
в данном курсе). С развитием фреймворка и появлением энтузиастов
использовать React Native стало возможно за пределами мобильных
платформ: ​Windows​, ​MacOS​, ​Web​. Для этих систем появились свои версии
React Native которые приносят поддержку данного фреймворка.

Возможно у вас возникает вопрос почему именно React Native, когда на слуху
часто можно услышать другие фреймворки? Ответом на данный вопрос будет
в основном зрелость данной технологии и количество людей которые
поддерживают её прямо (развивая сам фреймворк) или косвенно (создавая
компоненты), ни один другой фреймворк не может похвастаться такими
плюсами, ближайшим к таким показателям может стать ​Flutter ​от корпорации
Google, но на данный момент он ещё слишком молод чтобы на него можно
было положиться.

Чтобы подпитать ранее написанный текст фактами из реальной жизни,
достаточно увидеть список приложений которые написаны при использовании
React Native:

1

https://facebook.github.io/react-native/
https://reactjs.org/
https://github.com/facebook/react-native
https://github.com/microsoft/react-native-windows
https://github.com/ptmt/react-native-macos
https://github.com/necolas/react-native-web
https://flutter.dev/

Отдельно вы можете изучить содержимое ​следующего репозитория​, в котором
в виде списка представлены приложения написанные различными
разработчиками.

Если же вы считаете в целом что кроссплатформенная разработка не может
быть соизмерима и быть полноценной заменой нативной, то следующие
цифры должны изменить ваше мировоззрение касательно данного вопроса:

2

https://github.com/ReactNativeNews/React-Native-Apps

3

Если у вас ещё остались сомнения или же вы считаете что есть технологии
которые способны заменить React Native и при этом увеличить количество
положительных моментов, то напишите нам, мы рассмотрим любое ваше
предложение (серьёзно, пишите), в ином случае начнем процесс с того с чего
начинается любой другой курс, установки инструментария для работы.

4

Примечание
Документ затрагивает различные аспекты разработки при использовании React
Native. По мере прочтения документа вы будете встречаться с различными
ссылками которые дадут вам детальное объяснение работы модуля или
функционала.

На момент написания документа последняя версия React Native была 0.61.1.
К моменту прочтения версия может отличаться от той что используется в
документе и различные требования и зависимости могут изменится.

5

Установка инструментария

Зависимости

Android
Для стабильной работы React Native на вашей машине потребуется установить
следующие зависимости:

● Java SE Development Kit (JDK)​ - комплект разработчика приложений на
языке Java, включающий в себя компилятор Java (javac), стандартные
библиотеки классов Java, примеры, документацию, различные утилиты и
исполнительную систему Java (JRE);

● Node JS​ - программная платформа, основанная на движке V8
(транслирующем JavaScript в машинный код), превращающая JavaScript
из узкоспециализированного языка в язык общего назначения;

● Watchman​ - утилита которая “следит” за изменениями файлов;
● Google Chrome​ - пригодиться для удаленной отладки приложений;
● Yarn​ - менеджер пакетов
● Android Studio​ - IDE для разработки приложений под Android;

Вы могли заметить что вместе с Node JS был установлен менеджер пакетов
npm​ который позволяет нам устанавливать внешние зависимости и
компоненты, выполнять различные команды при помощи CLI и многое другое.

Для того чтобы мы могли выполнять команды связанные с React Native
необходимо установить React Native Command Line Interface, чтобы сделать
это достаточно выполнить следующую команду в командной строке:

npm install -g react-native-cli

Даже если у вас есть устройство под управлением Android, вам нужно будет
установить эмулятор для проверки работы вашего приложения на различных
версиях данной ОС и различных размерах и форм факторах девайсов, чтобы
убедиться что ваше приложение будет выглядеть и работать отлично на
большинстве устройстве.

6

https://www.oracle.com/technetwork/java/javase/downloads/jdk13-downloads-5672538.html
https://nodejs.org/en/download/current/
https://facebook.github.io/watchman/docs/install.html
https://www.google.com/chrome/
https://yarnpkg.com/en/
https://developer.android.com/studio
https://www.npmjs.com/

Более детальную информацию по установке вы можете прочитать ​на сайте
React Native

7

https://facebook.github.io/react-native/docs/getting-started
https://facebook.github.io/react-native/docs/getting-started

iOS

Если вы работаете на Windows или Linux то вам необходимо будет либо купить
устройство которое поддерживает Mac OS или ​установить виртуальную
машину​ (в этом случае вы сможете работать на вашей операционной системе,
а работа связанная с установкой приложений на устройства под управлением
iOS или работа с нативным кодом будет происходить в виртуальной машине)

Более детальную информацию по установке вы можете прочитать ​на сайте
React Native

8

https://www.geekrar.com/install-macos-mojave-on-vmware/
https://www.geekrar.com/install-macos-mojave-on-vmware/
https://facebook.github.io/react-native/docs/getting-started
https://facebook.github.io/react-native/docs/getting-started

IDE
Для непосредственного написания кода нам нужно установить IDE, здесь у нас
есть несколько альтернатив которые можно будет использовать в зависимости
от ваших предпочтений:

● WebStorm​ - IDE от JetBrains распространяемая на основе подписки для
работы с JavaScript

● Visual Studio Code​ - Бесплатно распространяемая, open source IDE от
корпорации Microsoft

Для большего удобства при работе с кодом рекомендуется поставить
следующие расширения:

WebStorm

● Key Promoter X​ - отображает горячие клавиши для действий которые вы
совершаете при помощи мыши.

● Code Glance​ - показывает полное содержимое открытого файла и
позволяет передвигаться по нему.

● Ace Jump​ - навигация по коду при использовании различных сочетаний
клавиш.

● UUID Generator​ - генератор универсальных уникальных идентификаторов

Visual Studio Code

● git-autoconfig​ - позволяет выбирать git пользователя перед работой с
проектом

● GitLens​ - даёт больше контроля и возможностей для работы с git

9

https://www.jetbrains.com/webstorm/
https://code.visualstudio.com/
https://plugins.jetbrains.com/plugin/9792-key-promoter-x/
https://plugins.jetbrains.com/plugin/7275-codeglance/
https://plugins.jetbrains.com/plugin/7086-acejump/
https://plugins.jetbrains.com/plugin/8320-uuid-generator/
https://marketplace.visualstudio.com/items?itemName=shyykoserhiy.git-autoconfig
https://gitlens.amod.io/

JavaScript
Перед тем чтобы продолжить изучение данного курса, желательно
ознакомится с основами JavaScript и TypeScript, для этого вам помогут
следующие учебники:

● Современный учебник JavaScript
● Учебник TypeScript​ - TypeScript лишь расширяет возможности JavaScript,

поэтому большинство что вы прочтете в этом учебнике будет вам
знакомо после прочтения первой ссылки.

Коротко опишем основы касаемые JavaScript:

JavaScript - ​это язык интерактивности на веб-страницах. Без него сейчас не
обходится ни один сайт в интернете. И даже больше! Используя различные
фреймворки, JavaScript заполоняет интернет: серверная сторона (​Node.js​)​,
клиентская часть(​React​, ​Angular​, ​Vue​) мобильные приложения (​React Native​,
Ionic​), виртуальная реальность (​React​ ​VR​) и так далее. Поэтому, если вы
хотите пойти по одному из этих путей - нативный JS станет для вас просто
необходимой базой.

Типы данных, переменные, основные операторы
Очень важный аспект любого языка программирования — это его система
типов и типы данных в нем. Для строго типизированных языков
программирования, например для таких как Java, переменные определяются
конкретными типами, которые в свою очередь ограничивают значения
переменных.

Несмотря на то, что JavaScript — это динамически типизированный язык
программирования, существуют расширения над языком, которые
поддерживают строгую типизацию, например ​TypeScript​.

В JavaScript есть 7 основных типов.

● number​ для любых чисел: целочисленных или чисел с плавающей точкой.
● string​ для строк. Строка может содержать один или больше символов, нет

отдельного символьного типа.

10

https://learn.javascript.ru/
https://urvanov.ru/2019/05/08/%D1%83%D1%87%D0%B5%D0%B1%D0%BD%D0%B8%D0%BA-typescript/
https://nodejs.org/en/
https://reactjs.org/
https://angular.io/
https://vuejs.org/
https://facebook.github.io/react-native/
https://ionicframework.com/
https://facebook.github.io/react-360/
https://facebook.github.io/react-360/
https://facebook.github.io/react-360/
https://www.typescriptlang.org/
https://learn.javascript.ru/types#chislo
https://learn.javascript.ru/types#stroka

● boolean​ ​–​ булевый тип ​может принимать только два значения: ​true
(истина) и ​false​ (ложь).

● null​ для неизвестных значений – отдельный тип, имеющий одно значение
null​.

● undefined​ для не присвоенных значений – отдельный тип, имеющий одно
значение ​undefined​.

● object​ для более сложных структур данных.
● symbol​ для уникальных идентификаторов​.

Вы уже наверно начали задаваться вопросом, а как же массивы, функции,

регулярные выражения и прочие вещи?

Все это специальные виды объектов.

JavaScript содержит несколько конструкторов для создания и других различных

объектов, например, таких как:

● Date​ — для создания объектов даты и времени

● RegExp​ — для создания регулярных выражений

● Error​ — для создания JavaScript ошибок

В JavaScript есть следующие типы операторов:
● Операторы присваивания
● Операторы сравнения
● Арифметические операторы
● Бинарные операторы
● Логические операторы
● Строковые операторы
● Условный (тернарный) оператор
● Оператор запятая
● Унарные операторы
● Операторы отношения
● Приоритет операторов

Массивы, методы map, filter деструктуризация массивов

11

https://learn.javascript.ru/types#bulevyy-logicheskiy-tip
https://learn.javascript.ru/types#znachenie-null
https://learn.javascript.ru/types#znachenie-undefined
https://learn.javascript.ru/types#obekty-i-simvoly
https://learn.javascript.ru/types#obekty-i-simvoly
https://learn.javascript.ru/date
https://learn.javascript.ru/regular-expressions
https://learn.javascript.ru/try-catch
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B_%D0%BF%D1%80%D0%B8%D1%81%D0%B2%D0%B0%D0%B8%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B_%D1%81%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%91%D0%B8%D0%BD%D0%B0%D1%80%D0%BD%D1%8B%D0%B5_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%9B%D0%BE%D0%B3%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%A1%D1%82%D1%80%D0%BE%D0%BA%D0%BE%D0%B2%D1%8B%D0%B5_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%A3%D1%81%D0%BB%D0%BE%D0%B2%D0%BD%D1%8B%D0%B9_(%D1%82%D0%B5%D1%80%D0%BD%D0%B0%D1%80%D0%BD%D1%8B%D0%B9)_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%B7%D0%B0%D0%BF%D1%8F%D1%82%D0%B0%D1%8F
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%A3%D0%BD%D0%B0%D1%80%D0%BD%D1%8B%D0%B5_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D1%8B_%D0%BE%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D1%8F
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Expressions_and_Operators#%D0%9F%D1%80%D0%B8%D0%BE%D1%80%D0%B8%D1%82%D0%B5%D1%82_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%BE%D0%B2

Массив – ​структура данных​, хранящая набор значений (элементов массива),
идентифицируемых по индексу или набору индексов, принимающих целые
(или приводимые к целым) значения из некоторого заданного непрерывного
диапазона. Например, массивы понадобится нам для хранения списка
чего-либо: пользователей, товаров, элементов HTML и т.д.

● Методы массивов — map, filter, reduce
○ Array.prototype.map() принимает массив, каким-нибудь образом

преобразует его элементы и возвращает новый массив
трансформированных элементов.

○ Array.prototype.filter() принимает массив, просматривает каждый
элемент и решает, убрать его или оставить. Возвращает массив
оставшихся значений.

○ Array.prototype.reduce() принимает массив и вычисляет на основе
его элементов какое-то единое значение, которое и возвращает.

Деструктуризация​ это разбивка сложной структуры на простые части. В
JavaScript, таковая сложная структура обычно является объектом(о них
поговорим в следующей главе) или массивом.

Объекты, деструктуризация объектов, классы
Как мы знаем из первой главы, в JavaScript существует семь типов данных.
Шесть из них называются «примитивными», так как содержат только одно
значение (будь то строка, число или что-то другое). ​Объекты​ же используются
для хранения коллекций различных значений и более сложных сущностей. В
JavaScript объекты используются очень часто, это одна из основ языка.

В ​этой​ статье подробно рассказывается про объекты, их свойствах, методы
объектов, а также про деструктуризацию объектов можно почитать ​здесь​.

Метод Object.keys() возвращает массив из собственных перечисляемых
свойств переданного объекта, в том же порядке, в котором они бы обходились
циклом ​for...in​ (разница между циклом и методом в том, что цикл перечисляет
свойства и из цепочки прототипов). ​Примеры использования​.

12

https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B0_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85
https://github.com/mbeaudru/modern-js-cheatsheet/blob/master/translations/ru-RU.md#%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D1%8B-%D0%BC%D0%B0%D1%81%D1%81%D0%B8%D0%B2%D0%BE%D0%B2--map--filter--reduce
https://medium.com/@stasonmars/%D0%B4%D0%B5%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F-%D0%B2-es6-%D0%BF%D0%BE%D0%BB%D0%BD%D0%BE%D0%B5-%D1%80%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE-b865bb71f376
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Working_with_Objects
https://developer.mozilla.org/ru/docs/Web/JavaScript/Guide/Working_with_Objects#%D0%A1%D0%BE%D0%B7%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BD%D0%BE%D0%B2%D1%8B%D1%85_%D0%BE%D0%B1%D1%8A%D0%B5%D0%BA%D1%82%D0%BE%D0%B2
https://medium.com/@stasonmars/%D0%B4%D0%B5%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F-%D0%B2-es6-%D0%BF%D0%BE%D0%BB%D0%BD%D0%BE%D0%B5-%D1%80%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B4%D1%81%D1%82%D0%B2%D0%BE-b865bb71f376
https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Statements/for...in
https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Global_Objects/Object/keys#Examples

В объектно-ориентированном программировании класс – это расширяемый
шаблон кода для создания объектов, который устанавливает в них начальные
значения (свойства) и реализацию поведения (методы).

На практике нам часто надо создавать много объектов одного вида, например
пользователей, товары или что-то ещё. С этим нам могут помочь ​конструкторы,
создание объектов через "new"​, а именно new function.
Но в современном JavaScript есть и более продвинутая конструкция «class»,
которая предоставляет новые возможности, полезные для
объектно-ориентированного программирования.
Иногда говорят, что class – это просто «синтаксический сахар» в JavaScript
(синтаксис для улучшения читаемости кода, но не делающий ничего
принципиально нового), потому что мы можем сделать всё то же самое без
конструкции class, однако, ​есть важные отличия​.
Как и в литеральных объектах, в классах можно объявлять вычисляемые
свойства, ​геттеры/сеттеры​ и т.д.

Подробнее про классы, их наследование, методы и т.д. можно почитать ​здесь
и ​здесь​.

Функции, контекст выполнения
Каждая функция в JavaScript — это объект Function. О свойствах и методах
объектов Function можно прочитать в статье ​Function​.

Функции — это не процедуры. Функция всегда возвращает значение, а
процедура может возвращать, а может не возвращать.

Чтобы вернуть значение, отличное от значения по умолчанию, в функции
должна быть инструкция ​return​, которая указывает, что именно нужно вернуть.
Функция без него вернёт значение по умолчанию. В случае ​конструктора​,
вызванного с ключевым словом ​new​, значение по умолчанию — это значение

его параметра this. Для остальных функций значением по умолчанию будет
undefined.
Подробнее про функции можно почитать ​здесь​ и ​здесь​.

13

https://learn.javascript.ru/constructor-new
https://learn.javascript.ru/constructor-new
https://learn.javascript.ru/class#ne-prosto-sintaksicheskiy-sahar
https://learn.javascript.ru/class#gettery-settery-drugie-sokrascheniya
https://learn.javascript.ru/class
https://medium.com/front-stories/%D0%BA%D0%B0%D0%BA-%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0%D1%8E%D1%82-%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D1%8B-%D0%B2-javascript-7978c0003f1d
https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Statements/return
https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Global_Objects/Object/constructor
https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Operators/new
https://developer.mozilla.org/ru/docs/Web/JavaScript/Reference/Functions
https://learn.javascript.ru/function-basics

Создание проекта
Описание основных минимальных знаний для работы с React Native лучше
всего отображают документы ​главной странички React Native​.

Документы небольшие и на простых примерах отображают работу различных
компонентов.

Теперь у нас есть все чтобы можно было перейти к изучению самого React
Native.

Создадим наше первое приложение, в качестве примера разработаем с нуля
наверное самый часто используемый тип приложения - магазин, который
позволит нам также использовать большинство самых частых операций и
компонентов (напр. авторизация, регистрация, работа со списками и т.д.)
которые можно переиспользовать для других сценариев.

Для создания проекта достаточно выполнить следующую команду:

react-native init myapp --template react-native-template-dex

Рассмотрим данную команду детальнее

● react-native init​ - создает стандартное приложение для работы с React
Native добавляя минимально требуемые зависимости для его работы.
Все зависимости имеют последнюю или рекомендуемую версию для
работы.

● myapp​ - название вашего приложения, а также часть его Bundle ID
● --template react-native-template-dex​ - шаблон компании Dex с

предустановленными компонентами, собственной структурой проекта,
утилитами и зависимостями.

Название приложения желательно писать на английском языке, без пробелов и
в нижнем регистре для избежания предупреждений и возможных проблем с
последующей работой.

14

https://facebook.github.io/react-native/docs/tutorial

В момент выполнения команды, в командной строке вы можете увидеть какие
шаги происходят для создания проекта.

В результате у вас должна появится папка с пустым проектом, пройдемся по
его содержимому чтобы понять что где находиться и за что отвечает.

Пример приложения реализованного при помощи шаблона:
https://github.com/dex-it/react-native-template-dex-example

15

https://github.com/dex-it/react-native-template-dex-example

Описание проекта
Начнём описание с корня нашего проекта делая акцента на каждой папке и
файле.
Некоторые файлы будут пропущены т.к. напрямую не используются и не
изменяются при разработке.

● __tests__​ - содержит файлы с тестами (​Jest​) для нашего проекта
● android / ios ​- содержит файлы связанные с нативной частью для Android

/ iOS
● node_modules​ - набор внешних зависимостей и их зависимостей,

которые были установлены на основе зависимостей из package.json
● resources ​- содержит настройки, шрифты и изображения используемые в

проекте
● src ​- папка с кодом нашего приложения
● tools ​- набор JavaScript скриптов для изменений внешних зависимостей и

выполнению до или после установки внешних зависимостей
● .gitignore​ - список файлов и папок которые должны быть игнорированы

git
● index.js​ - точка входа приложения
● package.json​ - список зависимостей, скриптов и дополнительных

описаний проекта.
● tsconfig.json​ - параметры TypeScript для компилятора
● tslint.json​ - расширяемый инструмент статического анализа, который

проверяет код TypeScript на наличие ошибок читаемости, удобства
обслуживания и функциональности.

● yarn.lock​ - файл который фиксирует версии внешних зависимостей
(создается и обновляется автоматически)

● resources

○ fonts​ ​- набор шрифтов которые будут добавлены в нативные
проекты

○ images​ - все изображения которые используются в проекте
○ settings​ - настройки проекта для различных сред исполнения

(development, test, staging, production)
● src

○ common ​- набор часто используемых компонентов, функций и т.п.

16

https://jestjs.io/
https://docs.npmjs.com/files/folders.html
https://git-scm.com/docs/gitignore
https://flaviocopes.com/package-json/
https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://palantir.github.io/tslint/
https://yarnpkg.com/lang/en/docs/yarn-lock/
https://medium.com/react-native-training/react-native-custom-fonts-ccc9aacf9e5e

○ core ​- основные компоненты, файлы конфигураций и т.п.
минимальные для корректной работы приложения

○ modules ​- набор модулей (страницы, специфичные компоненты,
работа с redux)

○ navigation ​- описание навигации и компоненты связанные с ней
○ types ​- описание типов внешних зависимостей которые не имеют

встроенной типизации

Стоит уделить особое внимание компонентам которые содержаться в
common/components​, т.к. некоторые из них заменяют некоторые уже
существующие компоненты дополняя их определенным функционалом (​напр​.
FlatListWrapper, SectionListWrapper​).

Дополнительно необходимо ознакомиться с файлами из папки ​core/theme, ​где
вы можете задавать цвета вашей схемы (​colors.ts​), описывать шрифты
(​fonts.ts​) и часто используемые стили (​commonStyles.ts​), а также использовать
различные полезные функции и константы (​common.ts​)

В целом рекомендуется ознакомиться с каждым файлом приложения, чтобы
понимать что доступно и заранее реализовано.

17

Package.json, зависимости, скрипты
Здесь содержиться вся основная информация о ваших зависимостях, скриптах
и дополнительных описаниях.

Содержимое
В нашем template вы можете увидеть минимально необходимый набор
скриптов для работы с React Native:

● preinstall​ - общий скрипт который выполняется перед тем как вы
производите команду yarn install. В нашем случае здесь происходит
проверка на то, что вы используете yarn, а не npm. Это сделано с целью
избежания проблем с версионностью, т.к. yarn и npm создают свои lock
файлы

● postinstall ​- общий скрипт который выполняется после установки
зависимостей. В нашем случае мы выполняем набор различных функций
которые производят замены в зависимостях с целью устранения
неполадок, изменения работы определенного функционала и т.п. из
файла postinstallFixes.js. Если у вас мало опыта, то советуем не вносить
свои изменения в этот файл.

● ts ​- выполняет компиляцию вашего кода. Сейчас из-за того, что мы
напрямую работаем с JS кодом, в основном используется для проверки
кода на наличие ошибок TypeScript, также удобен для работы с CI/CD.

● start ​- запуск packager’a
● start-reset-cache​ - запуск с packager’a с очисткой кэша. Используется в

случаях если при работе с компонентами возникают трудности или он
ведет себя неадекватно, либо при обновлении компонента у вас до сих
пор остаётся его старая версия.

● android:run​ - установка вашего приложения на устройство
● android:run+start​ - установка вашего приложения на устройство с

последующим запуском packager’a в одном и том же терминале
● android:build-release-apk​ - сборка релизного билда вашего приложения,

по итогу которой ваш билд окажется в одной из следующих папок (Не
забудьте, что для сборки релизной версии вашего приложения вам
понадобиться ​добавить для него подпись​):

18

http://facebook.github.io/react-native/docs/signed-apk-android

○ Windows: "C:/tmp/${rootProject.name}/${project.name}"
○ Linux/macOS: "/tmp/${rootProject.name}/${project.name}"

● android:clean​ - очистка нативного содержимого вашего проекта, включая

созданные APK из папок что описаны пунктом выше
● android:bundle​ - создание бандла для релизной или дебаг конфигураций

(можно дописывать в самом скрипте)
● ios:run​ - установка вашего приложения на устройство (предпочтительно

не пользоваться этим скриптом, а производить установку напрямую из
XCode, чтобы видеть все ошибки, выбирать устройство для установки и
т.п.)

● check-dependencies-updates​ - проверка ваших текущих зависимостей на
наличие новых версий с целью последующего обновления

● jest:run-tests​ - запуск jest тестов из папки __tests__
● jest:tests-watch​ - запуск всех тестов с возможностью фокусировке на

определенном наборе тестов
● lint​ - проверка на наличие ошибок линтера
● config-setup ​- установка environment, версии, номера билда и директории

проекта в нативном коде и файлах настроек.
● ResourcesGenerator​ - производит генерацию путей к изображениям

которые будут добавлены в папку /resources/images, после чего эти
ресурсы будут доступны для обращения в коде при помощи файла
ImageResources.g.ts

Зависимости
Здесь расположены, по нашему мнению минимальные зависимости которые
достаточны для разработки любого проекта.

Для того чтобы добавить внешнюю зависимость вам нужно будет прочесть
документацию той зависимости которую вы хотите подключить и следовать по
всем пунктам инструкции как это сделать.

Если зависимость содержит работу с нативным кодом (требует линковки (linki)
или просто вносит изменения в файлы нативного кода вашего проект, то для
того чтобы эту зависимость можно было использовать, вам необходимо будет
пересобрать проект на ваше устройство после установки и линковки

19

компонента. При работе с зависимостями с нативным кодом для iOS будет
использоваться CocoaPods

Если зависимость не требует линковки и не затрагивает нативный код, то вы в
режиме реального времени можете её установить и выполнить команду Reload
на вашем устройстве, после чего компонент будет доступен для работы (в
редких случаях потребуется перезапустить packager)

Вы могли заметить что в файле есть dependencies и devDependencies.
Разница между этими двумя видами зависимостей состоит в том что
dependencies это модули которые требуются в момент выполнения (runtime)
вашего приложения, в то время как вторые нужны лишь во время разработки.

Устанавливаются такие модули также как и обычные модули, только
добавляется дополнительный параметр --dev.

Существует также ещё несколько видов зависимостей, о них вы детально
сможете прочесть в документе от npm​. В ежедневной разработке они
используются редко.

Если вы обнаружили ошибку во внешней зависимости и хотите исправить её,
или же вы хотите подстроить зависимость под ваш компонент, то вам
необходимо будет делать fork этого компонента​ и вносить изменения в вашем
fork’e и ссылаться на него в зависимостях. Вместо версии напр. “1.0.0” вам
нужно будет использовать ссылку которая будет выглядеть следующим
образом “git+http://{ссылка на ваш компонент}.git#ветка”. Если вы вносите
изменение в вашем репозитории и хотите видеть эти изменения, то вам нужно
будет вести версионность в данном компоненте.

Полезные ссылки:

● Установка зависимостей и параметры установки
● Работа с зависимостями
● CocoaPods

20

http://facebook.github.io/react-native/docs/integration-with-existing-apps#configuring-cocoapods-dependencies
https://github.com/npm/npm/blob/2e3776bf5676bc24fec6239a3420f377fe98acde/doc/files/package.json.md#dependencies
https://help.github.com/en/articles/fork-a-repo
https://yarnpkg.com/lang/en/docs/cli/add/
https://yarnpkg.com/lang/en/docs/managing-dependencies/
https://cocoapods.org/

Компоненты
Концептуально, компоненты похожи на JavaScript-функции. Они принимают
произвольные данные (называемые props) и возвращают React-элементы,
которые описывают то, что должно появиться на экране.

Компоненты бывают “умными” (подключенные к Redux) и “тупыми” (не
подключенные к Redux).

“Тупые” компоненты - обычные компоненты в которые принимают описанные
пользователем данные, а также могут иметь свой локальный state.

Пример “тупого” компонента:

import​ React, {PureComponent} ​from​ ​"react"​;

import​ {Text, TextStyle, View, ViewStyle} ​from​ ​"react-native"​;

import​ {styleSheetCreate, styleSheetFlatten} ​from​ ​"../utils"​;

import​ {Colors, Fonts, isIos} ​from​ ​"../../core/theme"​;

// Данные которые поступают в компонент из

родительского компонента

interface IProps {

 value: string;

 style?: ViewStyle;

}

export​ ​class​ ​Indicator​ ​extends​ ​PureComponent​<​IProps​> {

 render(): JSX.Element {

 ​const​ {value, style} = ​this​.props;

 ​return​ (

 ​<View ​style​=​{styleSheetFlatten([styles.container,​ ​style​])}>

 ​<Text ​style​=​{styles.text}​ ​numberOfLines​=​{1}​>​{value}​</Text>

 ​</View>

);

 }

}

// Стили компонента

const​ styles = styleSheetCreate({

 container: {

 paddingTop: isIos ? ​4​ : ​2​,

 paddingBottom: ​4​,

 paddingHorizontal: ​7.5​,

 alignContent: ​"center"​,

 justifyContent: ​"center"​,

21

 backgroundColor: Colors.greenish,

 borderRadius: ​12​,

 } ​as​ ViewStyle,

 text: {

 fontSize: ​12​,

 fontFamily: Fonts.medium,

 color: Colors.white,

 letterSpacing: ​0​,

 } ​as​ TextStyle,

});

“Умные” компоненты как правило являются страницами, либо отдельными
уникальными элементами, которые подключены к Redux и получают
определенную информацию из хранилища. Она также как и “тупые”
компоненты могут иметь свой локальный state и иметь props’ы. Про
подключение к Redux и работу с данными из хранилища подробно можно будет
ознакомится в главе связанной с Redux.

Полезные ссылки:

● Часто используемые компоненты и API
● Жизненные циклы детально
● Когда использовать Component и PureComponent
● Компоненты и свойства в React
● Props
● State

22

https://facebook.github.io/react-native/docs/components-and-apis.html
https://www.netguru.com/codestories/react-native-component-lifecycle
https://codeburst.io/when-to-use-component-or-purecomponent-a60cfad01a81
https://learn-reactjs.ru/basics/components-and-props
https://facebook.github.io/react-native/docs/props
https://facebook.github.io/react-native/docs/state

JSX + FlexBox

JSX - это надстройка на JavaScript, которая позволяет использовать
XML-подобный синтаксис в JavaScript. JSX рекомендуется использовать при
написании компонентов, поскольку с помощью него проще представить
DOM-модель, в коде, написанном на JSX, легко разобраться.

Основные функции JSX:

● Встраивание выражений в JSX
● Использовать JSX-выражения внутри операторов if и циклов for,

присвоить его переменной, принимать в качестве аргумента и
возвращать его из функции

● Определение атрибутов с JSX
● Определение дочерних модулей с JSX
● JSX предотвращает хакерские атаки

Официальная документация​ детально покрывает раздел работы с FlexBox с
примерами и визуальной демонстрацией изменений.

Полезные ссылки:

● Официальная документация
● Описание JSX для React
● TypeScript и JSX

23

http://facebook.github.io/react-native/docs/flexbox.html
http://facebook.github.io/react-native/docs/flexbox.html
https://reactjs.org/docs/introducing-jsx.html
https://www.typescriptlang.org/docs/handbook/jsx.html

Redux
Redux — библиотека управления состоянием для приложений, написанных на
JavaScript.

Она помогает писать приложения, которые ведут себя
стабильно/предсказуемо, работают на разных окружениях
(клиент/сервер/нативный код) и легко тестируемые.

Рекомендуется прочитать ​небольшую статью которая коротко и в картинках
отражает всю суть Redux. Далее рассмотрим как происходит работа с Redux в
нашем приложении:

Структура модуля

При создании модулей (во главе стоит страница) должна быть следующая
структура файлов:

● modules
○ home

■ Home.tsx
■ homeActions.ts
■ homeReducer.ts
■ homeState.ts

Описание состояния приложения

Первым делом необходимо решить, какие данные будут храниться в состоянии
приложения. Описать состояние каждого модуля в виде интерфейса и
добавить поля в интерфейс состояния приложения.

// src/core/store/appState.ts

import​ {IAuthState, AuthInitialState} ​from​ ​"../modules/auth/authState"​;

import​ {IFriendsState, FriendsInitialState} ​from​ ​"../modules/friends/friendsState"​;

import​ {IHomeState, HomeInitialState} ​from​ ​"../modules/home/homeState"​;

export​ interface IAppState {

 auth: IAuthState;

 friends: IFriendsState

24

https://medium.com/russian/a-cartoon-intro-to-redux-e2108896f7e6

 home: IHomeState;

 ...

}

export​ ​function​ ​getAppInitialState​(): ​IAppState​ {

 ​return​ {

 auth: AuthInitialState,

 friends: FriendsInitialState,

 home: HomeInitialState,

 ...

 };

}

Названия полей в объекте состояния потом будут использованы при
создании корневого редьюсера.

Описание состояния модуля

Состояние каждого модуля изолированно в отдельном поле объекта
состояния приложения. Необходимо описать интерфейс состояния модуля и
создать объект начального состояния:

// описание состояния модуля

export​ interface IHomeState {

 counter: number;

 isLoading: boolean;

 message: string | ​null​;

}

// значение начального состояния модуля

export​ ​const​ HomeStateInitial: IHomeState = {

 counter: ​0​,

 isLoading: ​false​,

 message: ​null

};

Actions и Reducer модуля
Actions ​- это структуры, которые передают данные из вашего приложения в
хранилище. Они являются единственными источниками информации для
хранилища. Вы отправляете их в хранилище, используя метод ​dispatch()

Действия (Actions) описывают тот факт, что что-то совершилось, но не
определяют, как в ответ изменяется состояние (state) приложения. Это
задача для ​редюсеров (reducers)​.

25

Далее нужно описать экшены и редьюсер модуля. Чтобы облегчить эту
задачу используем typescript-fsa и typescript-fsa-reducers

Например:

Создание action’ов:

import​ {actionCreator} ​from​ ​"../../core/store"​;

import​ {IGrowArgs} ​from​ ​"../../core/api/generated/dto/home/GrowArgs"​;

import​ {IGrowResult} ​from​ ​"../../core/api/generated/dto/home/GrowResult"​;

export​ ​class​ ​HomeActions​ {

 ​// Экшен для асинхронных операций:

Home/GROW_COUNTER_STARTED, Home/GROW_COUNTER_DONE, Home/GROW_COUNTER_FAILED

 ​static​ growCounter = actionCreator.async<IGrowArgs, IGrowResult,

Error​>(​"Home/GROW_COUNTER"​);

 ​// Простой экшен для атомарного действия

 ​static​ growCounterProgress =

actionCreator<number>(​"Home/GROW_COUNTER_PROGRESS"​);

}

Создание reducer’a:

import​ {Failure, Success} ​from​ ​"typescript-fsa"​;

import​ {reducerWithInitialState} ​from​ ​"typescript-fsa-reducers"​;

import​ {HomeStateInitial, IHomeState} ​from​ ​"./homeState"​;

import​ {IAppState} ​from​ ​"../../core/store/appState"​;

import​ {CoreActions} ​from​ ​"../../core/store"​;

// обработчик экшена rehydrate - происходит на старте

приложения, после успешного получения данных из

хранилища

function​ ​rehydrateHandler​(state: IHomeState, rehydratedState: IAppState):

IHomeState​ {

 ​const​ nState = rehydratedState.home || state;

 ​return​ newState(nState, {isLoading: ​false​, counter: ​0​});

}

// обработчик экшена Home/GROW_COUNTER_STARTED - начало

асинхронной операции

function​ ​startedHandler​(state: IHomeState, args: IGrowArgs): ​IHomeState​ {

 ​return​ newState(state, {isLoading: ​true​});

}

26

// обработчик экшена Home/GROW_COUNTER_DONE - успешное

окончание асинхронной операции

function​ ​doneHandler​(state: IHomeState, success: Success<IGrowArgs, IGrowResult>):

IHomeState​ {

 ​return​ newState(state, {isLoading: ​false​, counter:

success.result.resultCounter});

}

// обработчик экшена Home/GROW_COUNTER_FAILED - ошибка

выполнения асинхронной операции

function​ ​failedHandler​(state: IHomeState, failure: Failure<IGrowArgs, Error>):

IHomeState​ {

 ​return​ newState(state, {isLoading: ​false​, message: failure.error.message});

}

// обработчик экшена Home/GROW_COUNTER_PROGRESS -

function​ ​growCounterProgressHandler​(state: IHomeState, value: number): ​IHomeState​ {

 ​return​ newState(state, {counter: value});

}

// создание редьюсера из описаний экшеном и их

обработчиков

export​ ​const​ homeReducer = reducerWithInitialState(HomeStateInitial)

 .case(CoreActions.rehydrate, rehydrateHandler)

 .case(HomeActions.growCounter.started, startedHandler)

 .case(HomeActions.growCounter.done, doneHandler)

 .case(HomeActions.growCounter.failed, failedHandler)

 .case(HomeActions.growCounterProgress, growCounterProgressHandler);

Корневой reducer
Корневой reducer комбинирует все reducer’ы которые используются в
приложении
import​ {Reducer} ​from​ ​"redux"​;

import​ {IAppState} ​from​ ​"./appState"​;

import​ {Reducers} ​from​ ​"./Reducers"​;

import​ {authReducer} ​from​ ​"../modules/auth/authActions"​;

import​ {friendsReducer} ​from​ ​"../modules/friends/friendsActions"​;

import​ {homeReducer} ​from​ ​"../modules/home/homeActions"​;

// структура передаваемого объекта

аналогична структуре корневого

объекта состояния приложения appState.ts

// каждый редьюсер модуля отвечает

только за часть состояния приложения

27

// при этом каждый экшен может быть

обработан в любом редьюсере
export​ ​function​ ​createMainReducer​(combineMethod: (reducers: any) =>

Reducer​<​IAppState​>): ​Reducer​<​IAppState​> {

 ​const​ reducers: Reducers<IAppState> = {

 auth: authReducer,

 friends: friendsReducer,

 home: homeReducer

 };

 ​return​ combineMethod(reducers);

}

Отображение данных состояния приложения
Любой компонент приложения может напрямую подключиться к redux
хранилищу при помощи декоратора
connectAdv​.

Чтобы изменить состояние приложения необходимо задиспатчить экшен в стор
состояния:

// Описание получаемых данных из

хранилища
interface IStateProps {

 counter: number;

}

// Описание действий
interface IDispatchProps {

 growCounterProgress(value: number): ​void​;

}

// Подключение к хранилищу состояния,

подписка на изменение состояния

@connectAdv(

 ​// Выборка данныхе для компонента из

хранилища

28

 (state: IAppState): IStateProps => ({

 counter: state.home.counter,

 }),

 (dispatch: Dispatch): IDispatchProps => ({

 growCounterProgress: (value: number): void => {

 dispatch(HomeActions.growCounterProgress(value));

 }

 })

)

export​ ​class​ ​HomePage​ ​extends​ ​BaseReduxComponent​<​IStateProps​, ​IDispatchProps​> {

 render(): JSX.Element {

 ​// Данные counter из хранилища
 ​const​ {counter} = ​this​.stateProps;

 ​return​ (

 ​<TouchableOpacity ​onPress​=​{this.growCounterProgress}​>

 ​<Text>

 {counter}

 ​</Text>

 ​</TouchableOpacity>

);

 }

 private growCounterProgress = (): void => {

 ​// Вызов действия для изменения

состояния
 ​this​.dispatchProps.growCounterProgress(​this​.stateProps.counter + ​1​);

 };

}

Работа с бизнес-логикой (API)
Работа с бизнес-логикой содержит в себе ранее знакомые операции,
добавляется лишь только запрос на внешнее API:

export​ ​class​ ​HomeActionsAsync​ {

 ​static​ growRemoteCounter(currentValue: number): SimpleThunk {

 ​return​ ​async​ (dispatch: Dispatch): ​Promise​<​void​> => {

 ​const​ params: GrowRequest = {value: currentValue};

 ​try​ {

 dispatch(HomeActions.growCounter.started(params));

 ​// Запрос внешнего API с ответом

29

 ​const​ result = ​await​ requestsRepository.homeApiRequest.grow(params);

 dispatch(HomeActions.growCounter.done({params, result}));

 } ​catch​ (error) {

 dispatch(HomeActions.growCounter.failed({params, error}));

 }

 };

 }

}

Детально о работе с Redux вы сможете прочесть или просмотреть
информацию по следующим ссылкам:

● Redux (русский)
● Видео курс от создателя Redux Дэна Абрамова
● Почему Reducer должен быть чистой функцией в Redux
● Ещё одно объяснение Redux

30

https://rajdee.gitbooks.io/redux-in-russian/content/
https://egghead.io/courses/getting-started-with-redux
https://medium.com/@abraztsov/%D0%BF%D0%BE%D1%87%D0%B5%D0%BC%D1%83-reducer-%D0%B4%D0%BE%D0%BB%D0%B6%D0%B5%D0%BD-%D0%B1%D1%8B%D1%82%D1%8C-%D1%87%D0%B8%D1%81%D1%82%D0%BE%D0%B9-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B5%D0%B9-%D0%B2-redux-ecc2242ff14
https://getinstance.info/articles/react/learning-react-redux/

Навигация
Основным компонентом для работы навигации внутри приложения является
react-navigation​.

Существует четыре типа навигации:

● StackNavigator ​- переход вперед от экрана экрана к экрану и обратно
● StackNavigator​(mode: "modal") - отображение экранов в модальном

режиме (поверх текущего окна)
● DrawerNavigator ​- боковое выезжающее меню (hamburger menu)
● TabNavigator ​- переключение между экранов при помощи табов в

произвольном порядке

Настройки элементов навигации не следует смешивать с кодом компонентов
экранов.

В идеале в коде экранов не должно быть информации о том каким образом он
появляется в структуре навигации приложения.

Поэтому элементы навигации должны быть расположены в отдельной папке:

● /navigation
○ components ​- набор часто используемых компонентов для

навигации
○ config ​- описание создания и подключение навигации + начальный

конфиг навигации
○ configurations ​- описание каждого типа навигации с его страницами,

reducer’ом и т.д.
○ actions.ts​ - набор действий для переходов
○ pages.ts​ - описание страниц

В первую очередь перейдем в файл pages.ts и опишем наши страницы:

export​ ​class​ ​Pages​ {

 login = ​"login"​;

31

https://reactnavigation.org/docs/en/getting-started.html

 main = ​"main"​;

 playground = ​"playground"​;

 inDeveloping = ​"inDeveloping"​;

}

Далее добавим новые страницы во внутрь навигатора
(​rootNavigationConfiguration.ts​):

export​ ​const​ RootNavigator = createStackNavigator({

 [NavigationPages.login]: {screen: AuthPage},

 [NavigationPages.main]: {screen: MainPage},

 [NavigationPages.playground]: {screen: Playground},

 [NavigationPages.inDeveloping]: {screen: InDeveloping},

}, {

 headerMode: ​"screen"​,

 cardStyle: {

 backgroundColor: isIos ? Colors.white : Colors.transparent

 },

});

Опишем переходы на эти страницы (​actions.ts​):

export​ ​class​ ​Actions​ {

 toggleDrawer = toggleDrawer();

 closeMenu = closeMenu();

 navigateToInDevelopment = simpleToRoute(NavigationPages.inDeveloping);

 navigateToPlayground = simpleToRoute(NavigationPages.playground);

 navigateToMain = simpleToRoute(NavigationPages.main);

 navigateToAuth = simpleToRoute(NavigationPages.login);

 navigateToBack = (): SimpleThunk => {

 ​return​ ​async​ (dispatch, getState): ​Promise​<​void​> => {

 ​const​ backAction = getBackAction(getState().navigation);

 ​if​ (backAction != ​null​) {

 dispatch(backAction);

 }

 };

 };

 internal = {

 backInRoot: actionCreator(​"AppNavigation/BACK_IN_ROOT"​),

 };

}

32

Теперь на страницах вы можете вызывать переход при помощи описанного
action’a:

interface IDispatchProps {

 navigateToMain(): ​void​;

}

@connectAdv(

 (dispatch: Dispatch): IDispatchProps => ({

 navigateToMain: (): void => {

 dispatch(NavigationActions.navigateToMain());

 },

 }))

export​ ​class​ ​Login​ ​extends​ ​BaseReduxComponent​<​IStateProps​, ​IDispatchProps​> {

33

Работа с запросами
Для работы с запросами, в нашем template выделена отдельная папка ​core/api
внутри которой содержится информация о запросах, описание интерфейсов,
различные функции, а также файл-обработчик, отвечающий за формирование
запроса и обработку ответа.

Пройдем весь путь формирования запросов, в качестве примера рассмотрим
два запроса на авторизацию и логаут:

1. Добавим файл (​MobileUserApiRequest.ts​) в папку ​core/api/generated/dto
который будет непосредственно содержать наши запросы:
/*tslint:disable*/
import​ {BaseRequest} ​from​ ​"../BaseRequest"​;

import​ {LoginRequest} ​from​ ​"./dto/user/LoginRequest.g"​;

import​ {LogoutRequest} ​from​ ​"./dto/user/LogoutRequest.g"​;

import​ {LogoutResponse} ​from​ ​"./dto/user/LogoutResponse.g"​;

import​ {UserProfile} ​from​ ​"./dto/user/UserProfile.g"​;

export​ ​class​ ​MobileUserApiRequest​ ​extends​ ​BaseRequest​ {

 ​constructor​(protected baseurl: string) {

 ​super​();

 ​this​.login = ​this​.login.bind(​this​);

 ​this​.logout = ​this​.logout.bind(​this​);

 }

 login(request: LoginRequest, config?: ​Object​): ​Promise​<UserProfile> {

 ​return​ ​this​.fetch(

 ​̀/user/login`​,

 ​Object​.assign({

 method : ​"POST"​,

 body: ​JSON​.stringify(request)

 }, config))

 .then((response) => response.json())

 .catch(BaseRequest.handleError);

 }

 logout(request: LogoutRequest, config?: ​Object​): ​Promise​<LogoutResponse> {

 ​return​ ​this​.fetch(

`/user/logout?lang=​${request.lang}​&city_id=​${request.city_id}​&access_token=​${req

uest.access_token}​̀​,

 ​Object​.assign({

 method : ​"DELETE"​,

 }, config))

 .then((response) => response.json())

 .catch(BaseRequest.handleError);

34

 }

}
2. Добавим ранее созданный класс в общий “репозиторий запросов”

(​core/api/generated/RequestsRepository.g.ts​):
import​ {MobileUserApiRequest} ​from​ ​"./MobileUserApiRequest.g"​;

export​ ​class​ ​RequestsRepository​ {

 ​constructor​(private baseurl: string) {

 }

 mobileUserApiRequest = ​new​ MobileUserApiRequest(​this​.baseurl);

}
3. Опишем интерфейсы которые используются в запросах (​LoginRequest,

UserProfile, LogoutResponse, LogoutRequest​), внутри папки
core/api/generated/dto​ создадим папку ​user ​внутри которой создадим для
каждого интерфейса свои файлы, для примера создадим только один
файл LoginRequest.g.ts:

/*tslint:disable*/

export​ interface LoginRequest {

 phone: string;

 password: string;

}
4. Теперь мы можем использовать этот запрос в наших асинхронных

action’aх:

export​ ​class​ ​AuthAsyncActions​ {

 ​static​ login(phone: string, password: string): SimpleThunk {

 ​return​ ​async​ ​function​ (dispatch: Dispatch): ​Promise​<​void​> {

 ​const​ params: LoginRequest = {phone, password};

 ​try​ {

 dispatch(AuthActions.login.started(params));

 ​const​ result = ​await

requestsRepository.mobileUserApiRequest.login(params);

 dispatch(AuthActions.login.done({params, result}));

 } ​catch​ (error) {

 dispatch(AuthActions.login.failed({params, error}));

 }

 };

 }

}

35

За различную обработку ответов запросов и формирование самих запросов
отвечает файл ​core/api/BaseRequest.ts​, который может совершать
определенные действия связанные с ответом.

36

Настройки и среда разработки (dev, test, stage, prod)
Для работы с различными настройками и переключениями между средами где
будет работать ваше приложение, были созданы несколько конфигурационных
файлов позволяющих вам самостоятельно заполнять свои параметры или
изменять уже существующие параметры.

Файлы расположены в папке:​ /resources/settings

Корневым файлом является ​mobileSettings.json.

Внутри этого файла задаются все значения для всех параметров типы которых
описаны в отдельном файле (​/src/core/settings/appSettings.ts)​. Эти параметры
впоследствие объединяются с файлами той конфигурации которая выбрана
сейчас (​environment​).

Для удобства разработки, также есть файл​ localSettings.json​, в котором
указываются значения которые будут использоваться на момент разработки,
т.е. при сборке билдов эти настройки не будут учитываться.

Пройдемся по каждой настройке, которая предоставляется из коробки:

● appName ​- название пакета приложения
● environment ​- среда разработки (для каждой среды, в коде уже

предусмотрены различные сценарии работы в отдельных компонентах)
● serverUrl ​- ссылка сервера для работы с API
● identity
● bugReportApiKey ​- ключ от сервиса для сбора ошибок ​Bugsnag
● useBugReporter ​- должен ли использовать сервис сбора ошибок или нет
● version ​- версия приложения, используется для внутреннего отображения

на экранах приложения
● build ​- номер билда
● showVersion ​- должна ли отображаться версия или нет
● supportUrl ​- ссылка для поддержки
● devOptions ​- параметры которые помогают при разработки приложения

37

https://www.bugsnag.com/

○ startScreen ​- стартовый экран для работы с приложением (чтобы
при reload’e приложения без fast reload’a отображался тот экран
который вам требуется)

○ useTestCase ​- позволяет внутри кода отталкиваться от этого
значения с целью создания определенных тестовых случаев для
различных сценариев

○ reduxLogger ​- параметры для redux logger’a который добавляет
записи в консоль разработчика в Google Chrome при удаленном
дебагге

○ reduxLoggerWhiteList ​- white list значений которые должны
попадать в logger

○ purgeStateOnStart ​- очистка (purge) redux store при обновлении
(reload) приложения

○ showAllComponentsOnStart ​- отображение страницы Playground на
момент запуска приложения

○ disableReduxLogger ​- отключение работы redux logger’a

Для создания собственных параметров, вам следует перейти в файл с
описаниями интерфейсов ​/src/core/settings/appSettings.ts ​добавить те
параметры которые вы хотите, и добавить начальное значение в
mobileSettings.json

Для использования текущих параметров, вы можете использовать константу
appSettingsProvider​, например:

 ​if​ (appSettingsProvider.settings.environment == ​"Production"​) {

 ​return​ ​null​;

 } ​else​ {

 ​return​ (

 ​<View ​style​=​{styles.container}​>

 ​<TouchableWithoutFeedback ​onPress​=​{this.showMenu}​>

 ​<View ​style​=​{styles.buttonStyle}​>

 ​<PopupMenu ​actions​=​{this.testUsersActions}

ref​=​{this.menu.handler}/​>

 {this.props.children}

 ​</View>

 ​</TouchableWithoutFeedback>

 ​</View>

);

 }

38

Отладка
Для работы с отладкой вашего приложения вы можете использовать
следующие средства и возможности:

● Удаленная отладка в Google Chrome
● React DevTools
● Отладка нативного кода в XCode и Android Studio

Также начиная с React Native 0.61 у вас есть возможность видеть вывод
различных методов класса console в терминале packager’a.

В нашем template, учтено логирование состояний хранилища Redux после
совершения action’ов, т.е. вы сможете видеть предыдущее, текущие изменения
и изменённое состояние хранилища после того как выполните dispatch action’a

ВАЖНО! При удаленной отладке работа приложения может отличаться!

На ваших девайсах, без удаленной отладки используются JavaScript движки от
платформ (JavaScriptCore на iOS и Hermes на Android), но при удаленной
отладке используется движок от Google Chrome - V8

Обращайте особое внимание на работу с датами, они будут отличаться в
первую очередь.

Для вывода информации в консоль используется ​console​.
Основные методы которые пригодятся при отладке:

● log​ - делает обычный вывод в консоль
● warn​ - делает вывод в консоль и дополнительно отображает информацию

в самом приложении.

Полезные ссылки:

● Официальная документация
● Детальное рассмотрение средств для отладки
● Полезная статья связанная с отладкой

39

https://github.com/facebook/react/tree/master/packages/react-devtools
https://www.w3schools.com/jsref/obj_console.asp
https://www.w3schools.com/jsref/met_console_log.asp
https://www.w3schools.com/jsref/met_console_warn.asp
http://facebook.github.io/react-native/docs/debugging
https://codeburst.io/react-native-debugging-tools-3a24e4e40e4
https://medium.com/research-engineering-at-simply-technologies/react-native-debugging-like-a-god-9610ac2ffd12

Производительность
Для устранения проблем с производительностью связанных с определенными
компонентами рекомендуется детально читать документацию компонента, в
большинстве случаев она содержит множество параметров которые
исправляют эти проблемы.

Хорошим примером в этом случае является ​FlatList ​который наследуется от
VirtualizedList​ где вы можете встретить множество параметров которые
улучшают работу списка, например:

● getItemLayout
● removeClippedSubviews
● keyExtractor
● windowSize

Для общих проблем связанных с общей работой, не завязанной на
определенные компоненты, ​Facebook предоставляет множество советов и
возможностей​ в плане производительности.

Общие советы связанные с производительностью:

● Используйте как можно меньше компонентов в render
● Используйте PureComponent
● Не делайте анонимные вызовы внутри параметров, callback’ов и т.п.
● Для работы со стилями используйте ​styleSheetCreate, styleSheetFlatten
● При работе с анимацией, используйте ​useNativeDriver
● Избегайте вычислений в render
● Используйте key для элементов списков и keyExtractor
● Не забывайте использовать ​React.Fragment

40

http://facebook.github.io/react-native/docs/flatlist
http://facebook.github.io/react-native/docs/virtualizedlist
http://facebook.github.io/react-native/docs/virtualizedlist#getitemlayout
http://facebook.github.io/react-native/docs/virtualizedlist#removeclippedsubviews
http://facebook.github.io/react-native/docs/virtualizedlist#keyextractor
http://facebook.github.io/react-native/docs/virtualizedlist#windowsize
https://facebook.github.io/react-native/docs/performance
https://facebook.github.io/react-native/docs/performance
https://facebook.github.io/react-native/docs/stylesheet
https://facebook.github.io/react-native/blog/2017/02/14/using-native-driver-for-animated
https://reactjs.org/docs/fragments.html

Правила написания кода
Следуя следующим простым правилам ваш код будет лаконичным и понятным
к восприятию.
Эти правила не являются обязательными, но следуя им вы будете уверены в
вашем коде:

1. Отсутсвие ошибок TypeScript'a и TSLint'a
2. Отсутсвие Warning'ов (только зависящие от разработчика)
3. Форматирование кода
4. Названия переменных, методов и т.д. должны быть короткие и

отображать то что они выполняют
5. Отсутствие копирования компонентов
6. Код не должен приводить к падениям (проверка написанного кода)
7. Общие стили должны находиться в файле CommonStyles
8. Практически все не redux компоненты должны быть PureComponent'aми
9. Reducer'ы должны быть чистыми функциями
10. Selector'ы должны выбирать только используемые используемые

параметры из state'a, а не весь state
11. State должен быть уникальным (отсутсвие копирования state'a)
12. State должен содержать только логически связанные с ним элементы
13. Количество строк в методах и функциях не должно превышать 30 строк
14. Отсутствие закомментированного кода
15. Использовать комментарии только в случае если алгоритм тяжелый

для понимания
16. Использовать //TODO для описания незавершенности компонента,

метода и т.д.
17. Корректное типизирование кода (уменьшение использования any)
18. Полное отсутствие мутирования redux state'a
19. Копирование массивов должно осуществляться следующим образом:

[...your_array]
20. Отсутствие неиспользуемого кода
21. Функция должна выполнять только одну операцию
22. Версия компонентов в package.json должна быть стабильная и

неизменяющейся
23. Стараться ежедневно следить за обновлениями компонентов
24. Писать код таким образом, чтобы его можно было тестировать

41

Обновление React Native
Обновление React Native, может происходить как ​вручную​, так и
автоматически​.

Обновления желательно производить в отдельных ветках, чтобы не навредить
текущему состоянию проекта и чтобы при любой возможности можно было
откатить изменения.

При установке обновлений, старайтесь делать удаление ресурсов которые
могут кэшировать текущее состояние, например:

● Удаляйте node_modules
● Удаляйте pods
● Выполняйте скрипт android:clean

Мы советуем производить обновления вручную, чтобы самостоятельно можно
было убедиться, что всё прошло без проблем, а также узнать какие именно
изменения вносятся в нативную сторону проекта.

Для ознакомления с обновлениями используются два репозитория:

● react-native
● react-native-releases

Если после обновления у вас возникают ошибки, то решение может быть
найдено среди issue обоих репозиториев. В частности, ​react-native-releases
создает issue при каждом релизе где ведется дискуссия касательно текущей и
следующей версии React Native.

42

https://facebook.github.io/react-native/docs/0.60/upgrading#upgrade-helper
https://facebook.github.io/react-native/docs/0.60/upgrading#react-native-cli
https://github.com/facebook/react-native/releases
https://github.com/react-native-community/releases
https://github.com/react-native-community/releases/issues

Тестовое задание
Для проверки и закрепления материала, предлагаем выполнить тестовое
задание:

Требуется реализовать приложение для кофейни.

Требования:
Дизайн приложения должен быть максимально схож с представленным ниже.
Авторизация и данные для отображения должны получатся от сервера.

Приложение должно работать на следующих платформах:

● Android (начиная с версии 5.0)
● iOS (начиная с версии 9.0)

Необходимо предусмотреть уникальные для платформы жесты, компоненты и
т.п. (напр. нажатие твердотельной (solid-state) кнопки назад на Android).

При реализации стараться использовать последние версии компонентов.

Ссылки:

● Дизайн
● API
● Swagger для проверки запросов и ответов от сервера

43

https://drive.google.com/open?id=1McTKjo_lJX9sl0l4ZfLNZrcbbuq-nkft
https://drive.google.com/file/d/0ByJ7a0Z2Qtv7QVBwWjAtRGlFWUk/view
http://176.31.32.73:8000/swagger/index.html

Полезные ссылки
● Redux-Saga аналог Thunk’ов с большими возможностями
● Scoping и Hoisting в JavaScript
● MDN JavaScript
● You Don’t Know JS Yet (серия книг)
● Native Directory - курируемый список библиотек React Native
● Примеры анимаций в React Native
● React Native CheatSheet
● JavaScript CheatSheet
● Набор готовых компонентов
● AirBnB JavaScript Style Guide
● Google JavaScript Style Guide
● Idiomatic JavaScript Style Guide
● Standard JavaScript Style Guide
● Описание работы с анимацией
● TypeScript Deep Dive
● Курируемый список компонентов

44

https://redux-saga.js.org/
http://www.adequatelygood.com/JavaScript-Scoping-and-Hoisting.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/getify/You-Dont-Know-JS
https://www.native.directory/
https://code.tutsplus.com/tutorials/practical-animations-in-react-native--cms-27567
https://rationalappdev.com/react-native-cheat-sheet/
https://github.com/mbeaudru/modern-js-cheatsheet
https://github.com/react-native-training/react-native-elements
https://github.com/airbnb/javascript
https://google.github.io/styleguide/jsguide.html
https://github.com/rwaldron/idiomatic.js/
https://github.com/standard/standard
https://animationbook.codedaily.io/introduction/
https://basarat.gitbooks.io/typescript/content/docs/getting-started.html
https://github.com/jondot/awesome-react-native

Теперь Вы готовы
ко второму этапу!

(углубленная практика)

office@dex-it.ru

777 783 35

